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Harmonic axial motion of the inner cylinder in the Taylor–Couette system can
efficiently shift the onset of instability to larger inner cylinder rotation rates. However,
once instability has set in, a rapid sequence of symmetry-breaking bifurcations results
in complex spatio-temporal dynamics even for very low post-critical values of the
rotation rate. Using spectral computations, we present a detailed study of this
sudden transition, shedding light on the nature of the complex flows observed in
recent laboratory experiments. In particular, it is shown that these bifurcations are
responsible for some of the experimentally observed frequencies which had been
attributed to background noise. Movies are available with the online version of the
paper.

1. Introduction
The flow of a viscous fluid contained in the gap between two rotating cylinders,

known as Taylor–Couette flow, has been a paradigm for the study of the transition
from a simple laminar flow, circular Couette flow, to turbulence following a progres-
sion of instabilities to flow states with increasing spatial and temporal complexity
(Coles 1965; Andereck, Liu & Swinney 1986). Tagg (1994) provides a guide to the
extensive literature on this problem. When the outer cylinder is at rest, the first
bifurcation results in Taylor vortex flow (TVF), a steady axisymmetric state consisting
of pairs of counter-rotating meridional vortices, periodic in the axial direction.

Several variations of the Taylor–Couette problem have focused on the degree of
stabilization that can be achieved, i.e. on the degree to which the threshold for the onset
of Taylor vortex flow can be shifted to larger Reynolds numbers (a non-dimensional
measure of the rotation of the inner cylinder). For example, the superposition of
an axial pressure-driven through-flow has been shown to be an efficient mechanism
to stabilize the basic flow (Snyder 1962; Takeuchi & Jankowski 1981; Meseguer &
Marques 2002). The effects on the nonlinear dynamics are complex and have been
studied experimentally (Lueptow, Docter & Min 1992; Tsameret & Steinberg 1994;
Wereley & Lueptow 1999).

Axial sliding of the inner cylinder has also been investigated as a stabilization
strategy, beginning with the pioneering experimental and analytical work of Ludwieg
(1964). However, much less attention has been paid to this problem, mainly due to the
technical difficulties in its experimental realization. This problem can be formulated
either as an open flow system or an enclosed system with endwalls. Ali & Weidman
(1993) studied the stability of the latter, and more recently Meseguer & Marques
(2000) compared the two systems. They focused on the former and showed that
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stability is enhanced only for slow axial sliding, but that the difference between
systems is small.

Hu & Kelly (1995) considered temporal modulations of both Poiseuille flow and
axial sliding in the open Taylor–Couette system. They performed a Floquet analysis of
the resulting periodic basic states and showed that both mechanisms are more efficient
in delaying transition than the corresponding steady flows. Their results motivated
the experimental work of Weisberg, Kevrekidis & Smits (1997) to verify this effect
and devise transition control mechanisms based on axial oscillations of the inner
cylinder. However, there was only qualitative agreement between the experiments and
the numerical Floquet analysis. Marques & Lopez (1997) showed that the discrepancy
was due to the presence of endwalls in the experiment, in contrast to the open flow
system considered by Hu & Kelly (1995). The Floquet analysis by Marques & Lopez
(1997) accounted for the leading-order effects of the presence of endwalls by imposing
a zero axial mass flow, and despite the fact that their model retained the idealization
of infinitely long cylinders, the agreement with the experiments was excellent.

Although the transition to TVF when the inner cylinder is forced to oscillate
harmonically in the axial direction is generally via a synchronous bifurcation to
axisymmetric cells, Marques & Lopez (1997) noted that for small frequencies and
large amplitudes of the axial oscillations there are some windows of parameter space
where the transition is via a Neimark–Sacker bifurcation (a Hopf bifurcation from a
periodic orbit) to non-axisymmetric spiral flow. In this case, the time-periodic basic
state bifurcates to a quasi-periodic torus featuring the forcing frequency, ωf , and the
frequency of the spiral mode, ωs . These windows of parameter space were investigated
by Marques & Lopez (2000) using Floquet analysis to identify the presence of
several strong resonances, i.e. ωs/ωf = p/q with q � 4. That linear analysis motivated
the recent experiments by Sinha, Kevrekidis & Smits (2006) who investigated the
associated nonlinear dynamics and identified regions of quasi-periodic motion and
frequency-locking, as well as observing the torus to break up for higher post-critical
values of the Reynolds number. However, the results they obtained were noisy even
for Reynolds numbers very close to critical. The signals they analysed contained
additional frequencies which were not a linear combination of ωf and ωs , and were
attributed to background noise.

In order to shed light on the transition to complex behaviour in periodically forced
systems and clarify the results of Sinha et al. (2006), we have numerically solved the
unsteady Navier–Stokes equations with highly accurate spectral computations. We
have found that subsequent bifurcations occurring very close to onset of the first
instability of the basic state, which are not detectable in the experiments due to the
precision that can be achieved, destroy the torus and introduce additional independent
frequencies into the solutions. Moreover, our theoretical analysis shows that due to
the symmetries of the system under consideration, frequency-locking is not possible
until the bifurcating flow has broken the translational and rotational symmetries. As
this happens through the introduction of new independent frequencies, any observed
frequency-locking must be only partial and therefore does not involve periodic flow.

The paper is structured as follows. The formulation and symmetries of the problem
are discussed in § 2, where the numerical discretization employed in order to detect
the bifurcations occurring in the axially forced case is presented. Section 3 deals with
the transition to complex dynamics, giving a detailed account of the progression of
flows leading to the complex flow observed in the experiments of Sinha et al. (2006).
In § 4 the presence of partial frequency-locking for non-symmetric flows is discussed,
whereas in Appendix A it is shown from normal-form analysis that resonances are
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Figure 1. Schematic of Taylor–Couette flow with axial oscillations of the inner cylinder.

inhibited due to the symmetries of the system, so that at onset of instability the
nonlinear dynamics in a neighbourhood of the Neimark–Sacker bifurcation can be
unfolded with a single parameter.

2. Numerical formulation and symmetries
Consider an incompressible fluid of kinematic viscosity ν and density � which is

contained between two concentric cylinders whose inner and outer radii are ri and ro.
The outer cylinder is stationary and the inner cylinder rotates at a constant angular
velocity Ω while executing harmonic oscillations in the axial direction with velocity
W sinΩf t∗.

Figure 1 shows a schematic of the flow. The independent dimensionless parameters
in this problem are: the radius ratio η = ri/ro, which fixes the geometry of the
annulus; the Couette flow Reynolds number Re = Ωdri/ν, where d = ro − ri; and the
non-dimensional amplitude A = Wd/ν and frequency ωf = Ωf d2/ν of the forcing.
The experimental apparatus of Sinha et al. (2006) had a radius ratio of η = 0.905, and
we have used the same value in our computations. Moreover, in the experiment the
amplitude and frequency of the axial motion were mechanically coupled such that
ωf = A/9.525; we have used this relationship in our computations presented here.

Space and time are scaled by d and d2/ν, respectively. The Navier–Stokes equations
and the incompressibility condition for this scaling are

∂tv + (v · ∇)v = −∇p + ∆v, ∇ · v = 0. (2.1)

The boundary conditions in cylindrical coordinates are

v(ri, θ, z, t) = (0, Re, A sinωf t), v(ro, θ, z, t) = 0. (2.2)

In the experiments of Sinha et al. (2006), the aspect ratio of the annulus is very large,
H/d = 152. We assume periodicity in the axial direction, with fundamental axial
wavenumber k0 and corresponding wavelength Λ = 2π/k0. Moreover, we account for
the leading-order effects of the presence of endwalls by imposing a zero net axial
mass flow at every instant in time (enclosed flow condition). The resulting basic flow
is (Tf = 2π/ωf )-periodic and consists of the superposition of the circular Couette flow
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and the axial annular Stokes flow

vb =

(
0,

ηRe

1 − η2

(
ro

r
− r

ro

)
, Af (r) sin(ωf t + α(r))

)
, (2.3)

where g(r) = f (r)eiα(r) is the solution of a second-order ODE satisfying the boundary
conditions of the problem and the enclosed flow condition:

g′′ +
1

r
g′ − iωg = p0, g(ri) = 1, g(ro) = 0,

∫ ro

ri

rg(r)dr = 0. (2.4)

The constant p0 is related to the axial pressure gradient needed to enforce the enclosed
flow condition. An explicit solution involving modified Bessel functions is given in
Marques & Lopez (1997), along with asymptotic expansions and other properties of
g, but it is more practical to numerically compute g by solving (2.4) with efficient
spectral methods. Here, we have used collocation at Gauss–Lobatto points.

The basic flow (2.3) can be used to simplify the numerical scheme by decomposing
the velocity field and pressure as

v(r, θ, z, t) = vb(r, t) + u(r, θ, z, t), (2.5)

∇ · u = 0, u(r = ri) = u(r = ro) = 0, (2.6)

p(r, θ, z, t) = pb(z) + q(r, θ, z, t), (2.7)

where u is a solenoidal velocity field vanishing at the cylinder walls and satisfying the
enclosed flow condition. We discretize the perturbation u by a spectral approximation
us of order L in z, order N in θ , and order M in r ,

us(r, θ, z, t) =

L∑
l=−L

N∑
n=−N

M∑
m=0

alnm(t)ei(lk0z+nθ)vlnm(r). (2.8)

Expansion (2.8) is introduced in (2.5) and the resulting expression for the velocity
field v is substituted in (2.1). The spectral scheme is obtained by projecting (2.1) over
a suitable set of test solenoidal fields, thus eliminating the pressure. This projection
yields a system of ODEs for alnm(t) which is integrated in time by a linearly implicit
method, where backwards differences are used for the linear part and polynomial
extrapolation is used for the nonlinear part. The details have been published in Avila,
Meseguer & Marques (2006). The code has been tested in the linear and nonlinear
regimes against the results of Meseguer & Marques (2002) and Jones (1985).

2.1. Fundamentals of instability and transition

Note that in the infinite-cylinder idealization, the spectrum of axial wavenumbers
k is continuous. However, when the spectral approximation (2.8) is used in the
nonlinear computations, the spectrum of axial wavenumbers becomes discrete. In
the computations, a fundamental axial wavenumber k0 is selected such that the
discretization resolves the modes responsible for the instability, as well as their
leading harmonics. A spectral resolution consisting of (L, M, N) = (65, 16, 20) modes
along with k0 = 0.196, leading to a wavelength of Λ ∼ 32 has been implemented
here. The value of k0 has been chosen in order to capture the dynamics arising
in the neighbourhood of the resonant point A = 79.25, Rec = 244.74 (identified
in the Floquet analysis). In particular, the (l, n) = (12, ±1) Fourier modes in the
expansion (2.8) have an axial wavenumber of k = 12k0 = 2.35, which is very close to
the critical axial wavenumber of the infinite case kc = 2.36. Overall, with L =65 our
nonlinear computations include up to four harmonics of the most dangerous modes
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Figure 2. Neutral stability curve of the azimuthal modes n= ± 1 for A = 79.25 as computed
with Floquet analysis. The circles are the discrete set of axial wavenumbers corresponding to the
Fourier modes used in the nonlinear computations (2.8). The first Fourier mode (l, n) = (1, 1),
with smallest axial wavenumber k = k0 = 0.196, is not shown as the corresponding Rec = 16 256
is off the scale of the plot. The most unstable mode is (l, n) = (12, 1), with axial wavenumber
k =12k0 = 2.35, which is very close to the critical axial wavenumber of the infinite case
kc = 2.36.
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Figure 3. Kinetic energy time series of basic flow (2.3) over a forcing period. The parameter
values are Re = 200, A =79.6.

(l =11, 12, 13). Figure 2 shows the neutral stability curve of the azimuthal modes
n= ± 1 for A = 79.25, found using Floquet analysis. The discrete axial wavenumbers
considered in the nonlinear computations are shown as filled circles on the curve.

Above the neutral stability curve of figure 2, the basic flow vb becomes unstable. In
the nonlinear computations, the instability is detected by monitoring the behaviour
of the kinetic energy of the velocity field v:

E(v, t) =
1

2V

∫ H

0

dz

∫ 2π

0

dθ

∫ ro

ri

v∗ · v r dr, (2.9)

where V is the volume of the annulus and ∗ denotes complex conjugate. Figure 3
shows a kinetic energy time series of the basic flow, v = vb, over a forcing period
Tf . The time series is Tf /2-periodic, the two peaks corresponding to the forcing at
maximum amplitude and opposite axial directions of the motion of the inner cylinder.

It is convenient to consider the kinetic energy of the perturbation field u, E(u, t).
Since the basic flow has u = 0, a non-zero value of E(u, t) indicates that the basic
state has become unstable and a new state has bifurcated. However, the kinetic energy
of the perturbation field alone does not provide information on the dominant axial
and azimuthal wavenumbers of the bifurcated solutions. In order to characterize the
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spatial complexity of these flows, we consider the kinetic energy associated with each
Fourier mode in the spectral approximation (2.8):

Eln(t) =
1

2V

∫ Λ

0

dz

∫ 2π

0

dθ

∫ ro

ri

u∗
ln · uln r dr, (2.10)

where uln is the (l, n) component of the perturbation field u:

uln = ei(lk0z+nθ)

M∑
m=0

alnm(t)vlnm(r). (2.11)

Note that due to the mutual orthogonality of the Fourier modes, this decomposition
yields

E(u, t) =

L∑
l=−L

N∑
n=−N

Eln(t). (2.12)

The changes in the distribution of modal energies of the solutions as the Reynolds
number is further increased aids in identifying subsequent bifurcations and in
elucidating the increased complexity of the resulting flow patterns.

2.2. Symmetries

The governing equations and boundary conditions are invariant under rotations Rα

about, and translations Ta along, the common axis of the cylinders. Rotations generate
the symmetry group SO(2), and due to the imposed axial periodicity of wavelength Λ,
axial translations generate another SO(2) symmetry group. As both actions commute,
the group of spatial symmetries of the system is G0 = SO(2) × SO(2). There is an
additional spatio-temporal symmetry S, which consists of a time translation of half
a period, φT/2, followed by a reflection about a plane orthogonal to the cylinder axis
Fz (acting as z → −z). The actions of these on the velocity are

Rα(v)(r, θ, z) = v(r, θ + α, z), (2.13)

Ta(v)(r, θ, z) = v(r, θ, z + a), (2.14)

Fz(v)(r, θ, z) = (vr, vθ , −vz)(r, θ, −z), (2.15)

φT/2(v)(r, θ, z, t) = v(r, θ, z, t + T/2). (2.16)

S = Fz ◦ φT/2 commutes with rotations but not with translations: STa = T−aS. If S

were purely spatial, i.e. the reflection Fz, then S and Ta would generate the orthogonal
group, O(2) = SO(2) � Z2 (semidirect product), where the elements of Z2 would be
Fz and the identity. As S is a space–time symmetry, S and Ta generate a space–time
symmetry group isomorphic to O(2), O(2)ST = SO(2) � Z2, where now the elements
of Z2 are S and the identity. The complete symmetry group of the problem is
G = SO(2) × O(2)ST . The basic flow (2.3) is invariant under G.

It is important to note that in many studies of flows in long cylinders, a spatial
periodicity of wavelength λc = 2π/kc in the axial direction is assumed (where kc is the
critical axial wavenumber obtained from linear stability analysis). This assumption,
which corresponds to fixing k0 = kc in (2.8), renders the l = 1 axial mode the only
one unstable in the parameter regime of study and results in the computations being
unable to investigate the competition between different spatial modes (except in the
exceptional cases that their wavelengths are simple rational ratios). If this imposed
axial periodicity is destroyed in subsequent bifurcations due to mode competition, as
is the case in the present problem, a much larger axial periodicity Λ =2π/k0, with
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k0 � kc, must be considered instead. The discretization of the problem is still periodic,
so the wavenumber ratio between different competing modes is rational, but our
discretization presented in § 2.1 allows for rational ratios with large denominators. The
interaction of these modes is practically indistinguishable from truly quasi-periodic
solutions.

3. Transition to complex spatio-temporal dynamics
The experiments of Weisberg et al. (1997) and the Floquet analysis of Marques &

Lopez (1997) showed that the stability of Couette flow can be greatly enhanced by
harmonic axial motion of the inner cylinder. Although this forcing stabilizes both
axisymmetric and non-axisymmetric modes, there are windows in parameter space
where the onset of instability is to spiral modes via a Neimark–Sacker bifurcation
(a Hopf bifurcation from a periodic orbit). Marques & Lopez (2000) showed that in
these windows strong resonances between the Neimark–Sacker frequency ωs and the
forcing frequency ωf occur, motivating the recent experiments by Sinha et al. (2006)
who studied the complex nonlinear dynamics subsequent to the Neimark–Sacker
bifurcation. Nevertheless, their results contained additional frequencies which could
not be identified and were attributed to background noise.

We show that these additional frequencies are due to subsequent bifurcations
taking place very close to the first onset of instability. The increments in Re at
which these additional bifurcations occur are so small (about 0.4%) that they
cannot be detected with the precision that could be achieved in the experiments
(the experimental uncertainty in Re was about 3%). A consequence of this rapid
succession of bifurcations following the loss of stability of the temporally forced
Couette flow is that the resulting state has much greater spatio-temporal complexity
than the unforced state at the same Re (which is the wavy vortex flow). Therefore,
there is a trade-off between the enhanced stability and the spatio-temporal complexity
of the flows once instability has arisen. For the axial forcing amplitudes considered in
the experiments and here (A ∼ 80), the critical Reynolds number Rec for instability
of Couette flow is about 80% higher than in the unforced case. Nevertheless, for
the axially forced case the flow begins to lose regularity in axial and azimuthal
wavenumber for Re about 2% above criticality due to the sequence of bifurcations.

3.1. Onset of instability

The spiral modes predicted by the Floquet analysis of Marques & Lopez (2000), from
now on referred to as Mode 1 (M1), bifurcate supercritically from the oscillating basic
state (2.3) in a Neimark–Sacker bifurcation. They are characterized by their axial and
azimuthal wavenumbers (k, n) which define a constant spiral angle β = tan−1(−n/k).
In particular, the full nonlinear solution is of the form f (r, t, ωst + kz + nθ); f is
Tf -periodic in the second argument and 2π-periodic in the third argument. Figure 4(a)
shows a grey-scale snapshot of the azimuthal vorticity at the outer cylinder, in a (θ, z)
planar rendering of the cylinder surface for M1 at A = 79.6 and Re =246.32. Note
that the azimuthal vorticity is constant over straight lines of angle β . Figure 4(b) shows
a grey-scale snapshot of the kinetic energy of the Fourier modes Eln(t). The leading
mode is (l, n) = (12, 1), i.e. with axial wavenumber k =12k0 = 2.35, which renders a
spiral angle of β ∼ −23◦.

The translational and rotational symmetries of the basic flow are broken, but M1
retains a helical symmetry Hα = RαT−nα/k , which consists of an arbitrary rotation
Rα composed with an axial translation T−nα/k , leaving the phase kz + nθ invariant;
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Figure 4. (a) Planar (θ, z) rendering of a grey-scale snapshot of the azimuthal vorticity of
the perturbation u at the outer cylinder r = ro, where black (white) corresponds to positive
(negative) values. A (b) snapshot of the kinetic energies of the Fourier modes Eln(t) in a
logarithmic grey-scale map black corresponds to the energy of the leading mode and white to
a level seven orders of magnitude lower (Movie 1 with the online version shows their temporal
evolution over two forcing periods). The flow is M1 at A = 79.6 and Re =246.32.

the bifurcated solution is a spiral wave that is modulated by the harmonic forcing.
However, due to the helical symmetry, strobing the solution at the forcing frequency
renders the second argument in f constant and the strobed spiral pattern then
precesses in the azimuthal direction with precession frequency −ωs/n. This azimuthal
rotation can also be interpreted as an axial translation (barber-pole effect), with axial
velocity −ωs/k. Therefore, M1 is a relative periodic orbit, in exactly the same way
as rotating and travelling waves are relative equilibria (Rand 1982; Wulff, Lamb &
Melbourne 2001). Movie 1 with the online version of the paper shows the temporal
evolution of the corresponding snapshots in figure 4, where the barber-pole effect
associated with ωs and the modulation associated with ωf are evident.

For the M1 case shown in figure 4, its radial velocity time series at the point
(r, θ, z) = ((ri + ro)/2, 0, 0) along with the time series of its kinetic energy and the
corresponding power spectra are shown in figure 5. The velocity time series and
corresponding spectra indicate that M1 is quasi-periodic. However, as M1 is a relative
periodic orbit, its kinetic energy has the form g(r, t, ωst +kz+nθ) and is not modified
by the presence of the spiral frequency ωs . On integrating g over the whole domain,
the ωst term is just a phase shift of the third argument; on integrating over a complete
period, the shift does not modify the result and the dependence on ωst disappears,
leaving only the Tf -periodic time dependence of the second argument (the periodic
forcing), as shown in figures 5(c) and 5(d).

The Neimark–Sacker bifurcation also breaks the spatio-temporal symmetry S, resul-
ting in two different M1, corresponding to left-handed (n= 1) and right-handed
(n= −1) spirals related by the action of S. The right-handed spirals propagate in
the negative axial direction whereas the left-handed spirals propagate in the positive
axial direction. Figure 6 shows a grey-scale snapshot of the azimuthal vorticity at the
outer cylinder (as would be seen by an observer situated opposite the apparatus; note
that due to the parallel projection used in this rendering, distances are not preserved
and the angle of the spirals appears distorted towards the sides of the image) of (a)
left-handed and (b) right-handed M1 at A = 79.6 and Re =246.32 (onset of instability
is at Rec = 245.42); their temporal behaviour is shown in Movie 2 with the online
version of the paper. Since the imposed periodic Stokes flow reverses its direction after
half a forcing period, these solutions spend half the time travelling with and the other
half travelling against the imposed flow. This behaviour is manifested in the kinetic
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Figure 5. Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0) and the kinetic
energy E(u, t), together with the corresponding power spectra, for the spiral waves (M1) shown
in figure 6.

(a) (b)

Figure 6. Perspective view (parallel projection of the cylinder). The grey-scale snapshot shows
the intensity of azimuthal vorticity of the perturbation u at r = ro. The flows are: (a) a
left-handed upward propagating M1 and (b) a right-handed downward propagating M1, both
at A = 79.6 and Re =246.32. Movie 2 with the online version of the paper illustrates their
temporal behaviour.

energy time series of figure 5(c), which shows two peaks of different intensity at t and
t + Tf /2 corresponding to propagation with (higher peak) and against (lower peak)
the imposed Stokes flow, indicating that the S symmetry is broken by the bifurcation
to M1. Note that for the S-symmetric basic flow the two peaks are identical (see
figure 3). Therefore, the symmetry group of M1 is purely spatial, and its elements are
the aforementioned helical motions Hα , generating a group isomorphic to SO(2).

3.2. Secondary bifurcations

The M1 spiral waves that bifurcate from the basic flow are only stable in a very
small region of parameter space, becoming unstable to a wavy spiral mode, M2. In
particular, this secondary bifurcation occurs precisely at ε =(Re − Rec)/Rec = 0.0039
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Figure 7. Snapshots of a perspective view (parallel projection of the cylinder). The grey-scale
map shows the intensity of azimuthal vorticity of the perturbation u at r = ro, where black
(white) corresponds to positive (negative) values. The flow corresponds to M2 at A =79.6 and
Re = 247 at 4 phases over one forcing period (Movie 3 with the online version of the paper
shows the temporal behaviour over two forcing periods).
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Figure 8. A figure 4 but for M2 at A = 79.6 and Re =247 (Movie 4 with the online version
of the paper shows the temporal behaviour over two forcing periods).

which is an order of magnitude smaller than the experimental uncertainty in Re.
Therefore, the M1 spiral waves born at onset are not observable in the experiments
of Sinha et al. (2006). The M2 state is characterized by the axial and azimuthal
wavenumbers (k, n) of the underlying spiral wave (M1), and the wavy azimuthal
wavenumber nw , which is typically 3 � |nw| � 5 depending on the parameter values
and the initial conditions. In contrast to the constant spiral angle β characteristic of
M1, the M2 wavy spirals have a time-dependent inclination, as illustrated in the flow
snapshots in figure 7. Movie 3 with the online version of the paper shows the temporal
behaviour of M2, and should be compared to Movie 2, corresponding to M1.

The bifurcation leading to M2 is not synchronous with the imposed Stokes flow, so
that the wavy spirals have a new independent frequency ωw which corresponds to a
secondary Hopf bifurcation from the quasi-periodic M1 to the three-torus state M2.
Nevertheless, as the spiral wave M1 is a relative periodic orbit with symmetry group
SO(2), the bifurcation to M2 is effectively a Neimark–Sacker bifurcation with SO(2)
symmetry (Wulff et al. 2001). The breaking of this symmetry results in a wavy flow with
a discrete helical symmetry, as evident in figure 8(a). Instead of the straight lines of
M1 in figure 4(a), the lines are modulated by the wavy azimuthal wavenumber nw =5.
This can also be seen in the kinetic energies of the Fourier modes shown in the grey-
scale snapshot in figure 8(b). M2 features an axial wavenumber of k =12k0 = 2.35 and
an azimuthal wavenumber of n= ± 1. Moreover, an additional mode (0, nw) = (0, 5)
appears, along with all the linear combinations between (k, n) and (0, nw). Movie 4
with the online version of the paper shows the temporal behaviour of the spiral angle
and the modal kinetic energies, Eln(t), where the differences between M1 and M2
are evident when comparing with Movie 1. Therefore, the (θ, z)-dependence of M2 is
of the form f (r, t, ωst + kz + nθ, ωwt + nwθ), where ωw is the precession frequency
associated to the wavy motion along the spiral pattern. The symmetry group of M2 is
the discrete subgroup of SO(2) generated by the helical symmetry Hλ/nw

=R2π/nw
Tλ/nw
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Figure 9. Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and the kinetic
energy E, together with the corresponding power spectra, for the M2 wavy spirals shown in
figures 7 and 8.

and their integer multiples, leaving both phases in f invariant; λ= 2π/k is the axial
wavelength of the spiral pattern. Due to the periodicity of the boundary conditions,
this group is isomorphic to �lnw

.
Figure 9 shows the time series of the radial velocity and kinetic energy, as well as

the corresponding power spectra, of M2 at the same parameter values as in figures 7
and 8. In contrast to M1 in figure 5, an additional high-frequency modulation ωw is
evident in the radial velocity. Since ωw is only associated with the precession speed of
the wavy mode, it is not present in the kinetic energy time series, which has the form
g(r, t, ωst + kz + nθ, ωwt + nwθ). The base state has two periodic directions θ and z,
and the two Hopf bifurcations correspond to time-dependent shifts in these directions.
Integrating with respect to θ and z, the two frequencies ωs and ωw disappear, and the
kinetic energy is simply Tf -periodic. In fact, in an appropriate rotating and axially
translating reference frame, M2 is purely periodic and synchronous with the forcing.
Although in the laboratory M2 has three independent frequencies and therefore
resides on a three-torus, the two frequencies ωs and ωw are of a kinematic nature, so
that the M2 wavy spirals are also relative periodic orbits.

M2 becomes unstable at a third bifurcation at ε = (Re −Rec)/Rec = 0.011, evolving
to a secondary wavy spiral state, termed M3. The visual differences between the
wavy spirals M2 before and M3 after this bifurcation are difficult to discern in the
laboratory frame (snapshots of M3 are shown in figure 10, and should be compared
with the corresponding snapshots of M2 in figure 7; their temporal behaviours are
shown in Movies 5 and 3 available with the online version). However, the (θ, z)-planar
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t = 0 Tf /4 Tf /2 3Tf /4

Figure 10. A figure 7 but the flow corresponds to M3 at A =79.6 and Re = 249. (Temporal
behaviour is shown in Movie 5 with the online version of the paper).
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Figure 11. A figure 4 but for M3 at A =79.6 and Re =249 (Movie 6 with the online version
of the paper shows the temporal behaviour).

rendering of the cylinder surface in figure 11(a) reveals that the azimuthal periodicity
of M2 has been lost, and M3 has defects in the azimuthal wavenumber. In particular,
the kinetic energy of the Fourier modes shown in the grey-scale map of figure 11(b)
elucidates that the spectrum in azimuthal wavenumbers is now full due to competition
between different wavy modes. Therefore, the helical motion (Hλ/nw

generating �lnw
)

is no longer a symmetry of the pattern. Nevertheless, M3 still preserves the axial
periodicity given by the axial wavenumber k =12k0 = 2.35, so that the subgroup of
�lnw

generated by Tλ remains. This symmetry group contains only axial translations
of a multiple of the axial wavelength of the pattern and it is isomorphic to �l .

The time series and corresponding power spectra of the radial velocity and kinetic
energy just beyond this third bifurcation at A =79.6 and Re =248.5 are shown in
figure 12. The characteristics of the radial velocity are very similar to those before
the bifurcation (compare with figure 9), although the irregularities in azimuthal
wavenumber result in a higher degree of irregularity in the signal. Moreover, the
kinetic energy is no longer Tf -periodic. It is now quasi-periodic, modulated by the
spiral frequency ωs .

A very small further increase in Re results in the loss of the axial periodicity present
in M3 (i.e. the remaining translational symmetry �l is broken). As a result of com-
petition between different axial modes, a non-constant axial wavelength is evident in
figure 13(a), showing a grey-scale snapshot of the azimuthal vorticity at the outer cylin-
der in a (z, θ)-planar rendering of the cylinder surface over the whole axial domain. At
this bifurcation, the defective wavy spiral states, termed M4, emerge. These are charac-
terized by a broad band in k. Figure 13(b) shows a snapshot of the kinetic energy of the
Fourier modes for M4. The spectrum is full in both axial and azimuthal wavenumbers,
illustrating the spatial complexity of this non-symmetric flow. Movie 7 shows the tem-
poral behaviour of the snapshots in figure 13 over four forcing periods. The increased
temporal complexity of M4 is clear in the radial velocity and kinetic energy time series
and corresponding power spectra shown in figure 14. The defects in the axial and
azimuthal wavenumbers lead to broad bands in both the spatial and temporal spectra.
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Figure 12. Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and the kinetic
energy E, together with the corresponding power spectra, for M3 at A = 79.6 and Re = 248.5.
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Figure 13. (a) Planar (z, θ ) rendering of a grey-scale map of the azimuthal vorticity of
the perturbation u at the outer cylinder r = ro. The flow is M4 at A = 79 and Re =250 (the
temporal behaviour is shown in Movie 7 with the online version of the paper). In (b) the kinetic
energy of the Fourier modes of this state is shown in a logarithmic grey-scale map.

We note that in order to detect this bifurcation, occurring only 1.8% above the
first onset of instability, spectral computations considering a small fundamental axial
wavenumber k0, as in the present work, are required. To the authors’ knowledge, this
is the first time that such an approach has been used in the Taylor–Couette problem.
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Figure 14. Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and the kinetic
energy E, together with the corresponding power spectra, for M4 in figure 13.
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Figure 15. A figure 7 but the flow corresponds to M4 at A = 79 and Re = 250 shown at
8 phases over one forcing period (temporal behaviour is shown in Movie 8 with the online
version of the paper).

In previous works, the fundamental axial wavenumber was set to k0 = kc, so that
defects in the axial wavenumber were not observable due to the imposed periodicity.
The flow snapshots of figure 15 (and the temporal behaviour in Movie 8 with the
online version) have been computed at A = 79 and Re = 250, the same point in
parameter space as in figure 8 of Sinha et al. (2006). Although these parameter values
correspond to the lowest postcritical value of their published data, Re is already 2.4%
above the first onset of instability. As the bifurcation from M3 to the non-symmetric
M4 occurs before this (1.8% above Rec), we can conclude that M4 corresponds to
the wavy spiral states that are observed in the experiments just following onset. As
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Figure 16. Diagram showing the successive bifurcations from the base state to M4 defective
wavy spirals. For each solution the symmetry group, its generators and the form of E(t) is
indicated. Hn is a Hopf bifurcation to an n-dimensional torus (a relative periodic orbit), and
SB is a symmetry-breaking bifurcation of a three torus; the ε = (Re − Rec)/Rec at which each
of these bifurcations takes place are also indicated (Rec = 245.42).

noted in Sinha et al. (2006), the pattern loses spatial regularity very fast, becoming
chaotic for higher Re. At this point, the spectral resolution demanded by these states
renders our computations impractical, and so we do not pursue them further.

Figure 16 is a schematic of the various solutions obtained, and the bifurcations
between them. The starting point is the base state, which is invariant under the full
symmetry group of the problem, G = SO(2) × O(2)ST , leaving the governing equations
invariant. Below each stable solution found is the symmetry subgroup leaving the
solution invariant, its generators, and the temporal character of the corresponding
kinetic energy. The arrows correspond to the different bifurcations we have found in
the present study, and each arrow is labelled with the type of bifurcation involved.
This sequence of symmetry-breaking bifurcations occurs over about a 2% variation
in Re (between about Re = 245 and 250), which is about 2/3 of the experimental
uncertainty in Re. Figure 17 shows the loci of computed solutions, where the
subsequent bifurcations from the basic flow leading to the defective wavy spirals
observed in the experiments are detailed in the parameter space.

4. Periodic flow and partial frequency-locking
In the previous section we have described the transition scenario that leads from the

simple time-periodic oscillating flow to complex dynamics following several symmetry-
breaking bifurcations. When the oscillating basic flow (a periodic orbit) is destabilized
via a Neimark–Sacker bifurcation, the flow becomes quasi-periodic, except for the
cases where the bifurcating spiral frequency ωs is resonant with the forcing frequency
ωf , i.e. the rotation number is rational ωs/ωf ∈ �, and then the flow remains periodic.
In generic systems, nonlinear behaviour in the neighbourhood of such resonances
typically manifests frequency-locking, i.e. there are regions of parameter space where
the solution trajectory corresponds to a closed orbit on a two-torus. These regions of
frequency-locking typically are shaped like a horn whose tip is a cusp point on the bi-
furcation curve at which the rotation number is rational (Arnold et al. 1999). However,
the normal-form analysis presented in Appendix A shows that due to the symmetries
of the problem, the dynamics of the bifurcated M1 spiral waves are the same
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Figure 17. Loci of computed solutions for η = 0.905 and ωf = A/9.525, as in Sinha et al.
(2006). Above the solid line Re = Rec(A) the basic flow is unstable and evolves to an M1
spiral wave (�), and to M2 wavy spirals (�) and M3 secondary wavy spirals (	) for higher
values of Re. The � indicate M4 defective wavy spirals. The dashed line is the resonance 7/4
curve originating at A/9.525 =79.25, Re = 244.74, and � are M1 on the resonance line.

regardless of whether ωs/ωf is rational or irrational. There is no distinction between
strong resonances, weak resonances (ωs/ωf = �/m, with m > 4), or no resonances
(ωs/ωf 
∈ �). Therefore, the resonance horns collapse to one-dimensional resonance
curves. This is a consequence of the rotational and translational symmetries of the
system. Moreover, Appendix B shows that due to the helical symmetry of M1,
frequency-locking is also absent following the secondary bifurcation to M2.

In order to detect resonances, we strobe the phase trajectory once every forcing
period to produce accurate global Poincaré maps. If the points on the map lie in a set
of q clusters then the flow is periodic, whereas a densely filled orbit indicates that the
flow is quasi-periodic. Figure 18(a) shows the Poincaré map for an M1 spiral wave at
A =79.6 and Re = 246.32 using the phase trajectory given by the axial and azimuthal
components of the perturbation (uz(t), uθ (t)) recorded at (r, θ, z) = ((ri + ro)/2, 0, 0).
Four clusters can be clearly observed. Since ωf = 79.6/9.525 = 8.357 and the computed
value of the spiral frequency at criticality is ωs =14.61, then the spiral wave is very
close to the ωs/ωf = 7/4 resonance. The presence of a high peak at ω =14.62 in the
power spectra of figure 5(b) together with the four distinct clusters of iterations in the
Poincaré map (the close-up of one cluster shows that the iterates are slightly displaced)
confirms this hypothesis. When Re is slightly increased by 0.03 to 246.35, the Poincaré
map shown in figure 18(b) is very similar, with the small shifts in the iterates of the
four clusters more pronounced. We have varied Re in very small increments about this
region of parameter space and found no evidence of frequency-locking, in agreement
with the equivariant theory in Appendix A. The flow is quasi-periodic and very close
to the 7/4 resonance curve (the dashed line in figure 17).

In the previous section it was shown that due to uncertainty in the experiments
(about 3% in Re), the states observed in the experiments are in the regime where the
flow has no symmetries left. For these M4 states, there is no symmetry restriction
on the development of resonance horns, but now the frequency-locking within these
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Figure 18. Poincaré maps for two M1 solutions, computed with the axial and azimuthal
components of the perturbation at (r, θ, z) = ((ri + ro)/2, 0, 0) over several forcing cycles. In
(a) the solution is very close to the 7/4 resonance at A = 79.6 and Re = 246.32, whereas in
(b) at A =79.6 and Re = 246.35, the flow is quasi-periodic, as is indicated by the slight shifts
in subsequent iterates of the map in the inset close-up (both close-ups are at the same scale).
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Figure 19. Poincaré maps for a secondary wavy spiral M3 at A = 79.6 and Re = 248.5 over
several forcing cycles. In (a) the axial and azimuthal components of the perturbation at
(r, θ, z) = ((ri + ro)/2, 0, 0) are used for the phase trajectory, whereas in (b) the kinetic energy
of the perturbation E(t) and the delayed signal E(t − τ ). The time delay is τ =0.452.

horns must be partial, i.e. only between two of the multiple frequencies that such
a complex flow possesses. Figure 19 shows the Poincaré map for secondary wavy
spirals M3 at A = 79.6 and Re = 248.5 computed from both the azimuthal and axial
components of the perturbation and the kinetic energy time series. Due to the multiple
independent frequencies that this flow possesses (ωf , ωs , ωw), and the irregularities due
to defects in azimuthal wavenumber, there is no identifiable structure in the Poincaré
map produced using the velocity. However, the Poincaré map based on the kinetic
energy indicates that the solution is close to the 7/4 partial-locking horn. In this case,
the kinetic energy acts as a natural filter for some of the frequencies in the flow, in
particular those due to the kinematic frequencies associated with the rotation and axial
translation of the spiral pattern. In fact, figure 19(b) is similar to the frequency-locking
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plots reported in the experiments of Sinha et al. (2006). This sheds some light on the
apparent discrepancy between the frequency-locking observations reported in these
experiments and our theoretical analysis which shows that the symmetries of the
basic flow and M1 inhibit frequency-locking. The sequence of symmetry-breaking
bifurcations over a very small range in Re removes this restriction and the partial
locking is then observable in our nonlinear computations as it is in the experiments.

5. Discussion and conclusions
Nonlinear dynamics of an axially forced Taylor–Couette system has been

investigated numerically by solving the unsteady three-dimensional Navier–Stokes
equations. In earlier studies, it was shown experimentally (Weisberg et al. 1997)
and numerically with Floquet analysis of the basic flow (Marques & Lopez 1997)
that a high degree of stabilization could be achieved for low frequencies and large
amplitudes of the forcing. More recently, the nonlinear dynamics beyond onset of
instability was experimentally investigated (Sinha et al. 2006), focusing on regions of
parameter space where transition is to a spiral mode following a Neimark–Sacker
bifurcation.

Our nonlinear numerical explorations have been focused on the same parameter
regime as in the experiments by Sinha et al. (2006). The flows they observed appeared
to contain a high degree of noise, i.e. the signals contained a number of frequencies that
could not be identified. Here, using precise spectral computations, we have shown that
this apparent noise is due to a sequence of symmetry-breaking bifurcations occurring
very close to the primary onset of instability introducing additional independent
frequencies. For Re only 0.39% above critical, a secondary bifurcation renders the
spiral mode a wavy spiral mode and introduces a third independent frequency.
For slightly higher Re, the wavy spirals develop defects in the azimuthal and axial
wavenumbers, resulting in spatial and temporal broadband spectra; this is commonly
referred to as the onset of soft turbulence. Overall, for Re just 2% above the
instability threshold for the basic state, the flow is spatio-temporally very complex.
The fine discretization in wavenumber used in the nonlinear computations, combined
with careful consideration of the symmetries of the bifurcated flows, is essential to
understand the sequence of symmetry-breaking bifurcations that leads from a simple
symmetric flow to a very complex pattern.

The experiments showed bands of frequency-locking between the frequency of the
forcing and the spiral frequency stemming from the Neimark–Sacker bifurcation.
Our theoretical work shows that frequency-locking leading to periodic flow is not
possible in the system under consideration. The rotational and translational SO(2)
symmetries of the oscillating basic flow annihilate the resonant terms in the normal
form of the Neimark–Sacker bifurcation, rendering the dynamics independent of the
ratio between frequencies and preventing the formation of resonance horns. However,
once the continuous SO(2) symmetries are broken, frequency-locking is permitted.
Since there are more than two independent frequencies in this parameter regime,
a one-parameter variation will generically only detect regions of partial frequency-
locking between two of the frequencies. This partial frequency-locking is very likely
the phenomena observed in the experiments, since in the regimes where locking was
detected the flow is extremely complex featuring various frequencies and defects in
the axial and azimuthal periodicity. Moreover, these additional frequencies account
for the noisy Poincaré maps which were used experimentally to identify the regions
of locking. This highlights the care that needs to be taken in distinguishing between
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extraneous noise and the effects of deterministic bifurcations in accounting for spatio-
temporal complex dynamics.
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Appendix A. Neimark–Sacker bifurcation with SO(2) × O(2)ST symmetry
The analysis of the dynamics in a neighbourhood of a periodic orbit in a continuous

system is greatly simplified by the introduction of the Poincaré map. Generically, the
Poincaré map is defined locally, in a neighbourhood of the periodic orbit considered.
However, in periodically forced systems like the present problem, there exists a
global Poincaré map P , consisting of strobing the flow once every forcing period
Tf . The base state, which is synchronous with the forcing, is a Tf -periodic orbit
γ that becomes a fixed point of the discrete dynamical system P . The dynamics
in a neighbourhood of γ is completely determined once the normal form of the
Poincaré map is known. The normal form is a low-dimensional low-order polynomial
dynamical system, which is easy to obtain once the critical eigenvectors of γ and
their symmetries are known. The critical eigenvectors span a low-dimensional linear
subspace tangent to the centre manifold. The amplitudes of these eigenvectors are the
natural coordinates of the centre manifold. In our problem, the base state γ depends
only on (r, t) and the critical eigenvectors can be Fourier expanded in (θ, z). They are
of the form u1(r, t)e

i(kz+nθ), u2(r, t)e
i(kz−nθ), with n= 1, and their complex conjugates.

The first is a left-handed spiral and the second is a right-handed spiral (both are
rotating waves in θ and travelling waves in z). Figure 6 shows the geometrical shapes
of these spirals. The centre manifold is four-dimensional, and we use as coordinates the
complex amplitudes (A, B, Ā, B̄) of the eigenvectors. The four eigenvectors bifurcate
simultaneously because the space–time symmetry transforms A into B .

A.1. Spatial symmetries: generic dynamics

Let x → P (x) = LP x + NP (x) be the discrete dynamical system considered (the
Poincaré map), restricted to the centre manifold, with a fixed point that we assume
to be the origin (after a convenient translation if necessary). The map is written as
the sum of a linear part, LP , and a nonlinear part, NP . The eigenvalues of LP are
the critical eigenvalues, of modulus one. The symmetries of the original problem act
on the amplitudes as a linear representation of the symmetry group of the problem,
that commute with LP . However, this applies only to purely spatial symmetries;
space–time symmetries require a different treatment.

The normal form of the map, when the symmetries are purely spatial and do not
involve time, satisfy the equations (Iooss & Adelmeyer 1998)

NP

(
L

†
P x

)
= L

†
P NP (x), NP (Gx) = GNP (x), ∀G ∈ G0, (A 1)

where L
†
P is the adjoint (conjugated and transposed) of LP . The symmetry group of

the spatial symmetries of the system under consideration is G0 = SO(2) × SO(2) and
it is generated by rotations Rα about, and translations Ta along, the common axis of
the cylinders. The actions of Rα and Ta on the amplitudes x = (A, B, Ā, B̄) are

Rα = diag(einα, e−inα, e−inα, einα), Ta = diag(eika, eika, e−ika, e−ika). (A 2)
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As LP commutes with Rα and Ta , it must be diagonal. Let eiβ1 be the eigenvalue
corresponding to A. As the space–time symmetry S transforms A into B , both have
the same eigenvalue. Therefore, LP must be of the form

LP = diag(eiβ1, eiβ1, e−iβ1, e−iβ1 ), (A 3)

where β1 is related to the spiral frequency ωs as β1 = ωsTf = 2π ωs/ωf . The normal
form for the Poincaré map is

P :

{
A → eiβ1A + N1(A, B, Ā, B̄),

B → eiβ1B + N2(A, B, Ā, B̄),
(A 4)

plus complex conjugates. Let ApBqĀrB̄j be a monomial in N1. The first equation in
(A 1) is a particular case of the second, because LP coincides with an axial translation
a =β1/k (LP = Tβ1/k). The second equation in (A 1) results in

einα(p−q−r+j ) = einα

eika(p+q−r−j ) = eika

}
⇒

p − q − r + j = 1

p + q − r − j = 1

}
⇒ p = r + 1, q = j, (A 5)

so N1(A, B, Ā, B̄) = AQ1(|A|2, |B|2), and analogously for N2. Equation (A 4) reduces
to

P :

{
A → eiβ1A(1 + Q1(|A|2, |B|2)),
B → eiβ1B(1 + Q2(|A|2, |B|2)),

(A 6)

where a factor e−iβ1 has been included in Qi for convenience. Some important
consequences of this normal form are worth noting. First, there are no resonant
terms, therefore the normal form is the same regardless of whether β1/2π is
rational or irrational. In particular, there is no distinction between strong resonances
(β1/2π = �/m, with m = 1, 2, 3 or 4), weak resonances (m > 4), or no resonances at
all (β1/2π 
∈ �). This is a consequence of the rotational and translational symmetry
of the system, i.e. the spatial symmetry group G0 = SO(2) × SO(2). Another important
consequence is the absence of frequency-locking phenomena. Generically, frequency-
locking takes place when resonant terms (different from A|A|2 and A|B|2 in N1,
and analogously in N2) couple the modulus and phase dynamics of A and B . By
introducing A= r1e

iφ1 and B = r2e
iφ2 , the normal form (A 6) can be written as

P :

{
r1 → r1

(
1 + Q1,1

(
r2
1 , r

2
2

))
,

r2 → r2

(
1 + Q2,2

(
r2
1 , r

2
2

))
,

{
φ1 → φ1 + β1 + Q1,2

(
r2
1 , r

2
2

)
,

φ2 → φ2 + β1 + Q2,1

(
r2
1 , r

2
2

)
,

(A 7)

and the modulus dynamics (r1 and r2) decouples from the phase dynamics (φ1 and φ2).
The decoupling is the cause of the suppression of the frequency-locking phenomena.

This frequency-locking suppression is very similar to the result of Rand (1982,
Theorem 3 and Remark) that Hopf bifurcations from rotating waves do not manifest
frequency-locking, due to the rotational symmetry. In our case, the base state is not
a rotating wave, but it is independent of the azimuthal and axial coordinates, i.e. it is
a SO(2) × SO(2) symmetric periodic orbit. The breaking of these symmetries results
in modulated spiral waves that do not manifest frequency-locking. There has been a
great deal of work concerning bifurcations from periodic orbits generalizing Rand’s
original work (Krupa 1990; Lamb, Melbourne & Wulff 2003), from which our result,
complementary to Rand’s, can be obtained. We have kept the result in the Appendix
for completeness.
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A.2. Space–time symmetry S

Now consider the implications of the space–time symmetry S. The square of S is the
identity on the base state of the system, but acting on an arbitrary solution results
in the global Poincaré map P : the two axial reflections Fz cancel each other, and the
total advance in time is the period of the forcing Tf . The fact that the Poincaré map
is a square, P = S2, has important implications for the dynamics (see for example
Swift & Wiesenfeld 1984, when the critical eigenvalues are simple). A powerful and
simple way to take into account the space–time symmetry is to analyse the normal
form of S and recover the Poincaré map normal form by squaring it. This has been
done, for example, in Marques, Lopez & Blackburn (2004) for a system with spatial
symmetry O(2) and spatio-temporal symmetry Z2. The analysis in that case was
facilitated by the fact that the spatio-temporal symmetry commuted with the spatial
symmetries, and the conditions to be satisfied by the normal form of S were the
same as in (A 1), just replacing LP by LS . But in the present problem, S does not
commute with the axial translations Ta (in fact STa = T−aS), so we need to establish
what are the conditions to be satisfied by the normal form of S. The condition
N(Gx) = GN(x) must be changed to a more general condition that includes the case
of non-commutativity of the spatial symmetries with S, and in particular with their
linear part LS . The discrete dynamical system S is a map S : x → F (x), but now
F is not G0-equivariant (i.e. F (Gx) 
= GF (x), ∀G ∈ G0). This is because there exist
elements of G0 that do not commute with S (e.g. the axial translations Ta). Inspired
by, and following the work of Lamb & Melbourne (1999) (and references therein),
we say that F satisfies a twisted equivariance condition of the form

F (Gx) = ψ(G)F (x), ∀G ∈ G0, (A 8)

where ψ is an automorphism of G0. This automorphism is fixed by the same
twisted equivariance condition on the linear part of S, LS(Gx) = ψ(G)LS(x), i.e.
ψ(G) = LSGL−1

S . Summarizing, if the normal form of S is x → S(x) = LSx +N(x), the
conditions on N are of the form

N
(
L

†
Sx

)
= L

†
SN(x), N(Gx) = ψ(G)N(x), ∀G ∈ G0, where ψ(G) = LSGL−1

S . (A 9)

Notice that when LS commutes with G (as in Marques et al. 2004), the inner
automorphism becomes the identity, and we recover the ordinary equivariant
condition (A 1). What is the action of LS on the centre manifold? The centre manifolds
and eigenvectors of P and their square-root S are the same, and the eigenvalues of P

are the eigenvalues of S squared. However, there is some freedom in the form of LS ,
because the eigenvalues are of multiplicity two (e.g. the two-dimensional eigenspace
associated with the eigenvalue eiβ1 has A and B as coordinates). This freedom is
fixed since LS must transform A into B , because the axial reflection Fz transforms
the left-handed spiral A into the right-handed spiral B (modulus the time translation
T/2). The action of LS on the complex amplitudes (A, B, Ā, B̄) is

LS =

⎛
⎜⎜⎝

0 eiβ1/2 0 0
eiβ1/2 0 0 0

0 0 0 e−iβ1/2

0 0 e−iβ1/2 0

⎞
⎟⎟⎠ (A 10)

and the actions of Rα and Ta are unchanged, given by (A 2). The automorphism
ψ can be explicitly computed: ψ(Rα) = Rα , ψ(Ta) = T−a , reflecting the fact that S

commutes with Rα , but STa = T−aS; ψ is an involution, ψ2 = Id , reflecting the fact
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that S2 =P . Having explicitly obtained the actions of LS , ψ and G0, we can work out
the conditions (A 9). The normal form for the space–time map S is of the form

S :

{
A → eiβ1/2B + N3(A, B, Ā, B̄),

B → eiβ1/2A + N4(A, B, Ā, B̄).
(A 11)

Let ApBqĀrB̄j be a monomial in N3. Following the same lines as in the purely spatial
symmetries case, we obtain

S :

{
A → eiβ1/2B(1 + Q(|B|2, |A|2)),
B → eiβ1/2A(1 + Q(|A|2, |B|2)).

(A 12)

Instead of two arbitrary functions Q3 and Q4, there is only one, Q, because LS

transforms A into B . By squaring the map, the normal form of the Poincaré map P

(A 6) is obtained, but thanks to the use of the space–time symmetry S, we obtain

Q1(|A|2, |B|2) = Q2(|B|2, |A|2) = Q̃(|A|2, |B|2), (A 13)

where Q̃ is a complex-coefficient polynomial; this is the constraint imposed by the
space–time symmetry S on the normal form of the Poincaré map. The relationship
between Q and Q̃ is easy to obtain, but convoluted†. In terms of the moduli and
phases of A and B , the normal form of the Poincaré map (A 7) reduces to

P :

{
r1 → r1

(
1 + Qm

(
r2
1 , r

2
2

))
,

r2 → r2

(
1 + Qm

(
r2
2 , r

2
1

))
,

{
φ1 → φ1 + β1 + Qp

(
r2
1 , r

2
2

)
,

φ2 → φ2 + β1 + Qp

(
r2
2 , r

2
1

)
,

(A 14)

where the polynomials Qm and Qp have real coefficients: 1 + Q̃= (1 + Qm) exp(iQp).
The moduli dynamics decouples from the phase dynamics, and we end up with a two-
dimensional reduced normal form, the first two equations in (A 14). As the polynomial
Qm is the same in r1 and r2, the fixed points of the reduced normal form are of the
form (r, r), including (0, 0) which is the base state, or they come in symmetric pairs
(r, r ′) and (r ′, r). In the complete problem, the fixed points of the form (0, r), (r, 0) and
(r, r), r 
= 0, are quasi-periodic solutions with two frequencies, and the fixed points of
the form (r, r ′), r 
= r ′ 
= 0, correspond to three-frequency solutions.

A.3. Bifurcation scenarios

In order to explore the dynamics in a neighbourhood of the bifurcation, the normal
form for S (A 12) is truncated up to fourth-order terms, and written in terms of the
moduli and phases of A and B:

S :

{
r1 → r2

(
1 + µ − ar2

2 − br2
1

)
,

r2 → r1

(
1 + µ − ar2

1 − br2
2

)
,

{
φ1 → φ2 + β1/2 + ν + cr2

2 + dr2
1 ,

φ2 → φ1 + β1/2 + ν + cr2
1 + dr2

2 .
(A 15)

Note that the symmetry group of this normal form is Z2 × Z2. One of the symmetries
corresponds to the exchange between r1 and r2 (r1 ↔ r2), and comes from the space–
time symmetry S. The other Z2 symmetry (r ↔ −r) comes from the use of polar
coordinates. The bifurcation is of codimension two (two independent parameters µ

and ν), but the reduced system is of codimension one since the parameter ν only
affects the phase dynamics. The only fixed points of the reduced planar system (r1, r2)

† The precise expression is Q̃(x, y) = {1 + Q(x, y)}{1 + Q(x|1 + Q(x, y)|2, y|1 + Q(y, x)|2)} − 1.
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in a neighbourhood of the origin are of the form (r, r), and there are two of them:

p0 = (0, 0), p3 =
(√

µ

a + b
,

√
µ

a + b

)
. (A 16)

The corresponding eigenvalues (in the reduced system for S) are

p0 : λ1 = 1 + µ, λ2 = −1 − µ, (A 17)

p3 : λ1 = 1 − 2µ, λ2 = −1 + 2
a − b

a + b
µ. (A 18)

The eigenvalues of the corresponding reduced system for P are the same squared. The
base state is p0, it exists for any µ value, it is stable for µ < 0 and unstable for µ > 0;
p3 exists only for µ/(a + b) > 0, and is stable for a − b > 0 and µ > 0. Both p0 and p3

are invariant under the space–time symmetry S. The bifurcation is supercritical for
a + b > 0 and subcritical for a + b < 0. The bifurcated state p3 is a linear combination
with the same weight (|A| = |B|) of the left-handed and right-handed spirals, which
travel in opposite axial directions; p3 therefore corresponds to a modulated standing
wave, MSW.

We can also look for periodic orbits of S, of period two, and these are fixed points
of the Poincaré map P . As P = S2, from (A 15) we obtain

P :

{
r1 → r1

(
1 + 2µ − 2ar2

1 − 2br2
2

)
,

r2 → r2

(
1 + 2µ − 2ar2

2 − 2br2
1

)
,

{
φ1 → φ1 + β1 + 2ν + 2cr2

1 + 2dr2
2 ,

φ2 → φ2 + β1 + 2ν + 2cr2
2 + 2dr2

1 .
(A 19)

The fixed points of the reduced planar system, of the form (r, r), are the same p0 and
p3 already obtained. But there is a pair of new fixed points of P :

p1 = (
√

µ/a, 0), p2 = (0,
√

µ/a), (A 20)

that exist for µ/a > 0. The fixed points p1 and p2 correspond to periodic orbits
of period two of the space–time symmetry S that transforms one into the other:
Sp1 = p2, Sp2 =p1, as can be checked directly in (A 15). Here p1 is a left-handed
spiral, a travelling wave in the axial direction; p2 is a right-handed spiral, traversing
in the opposite axial direction. Both are modulated travelling wave solutions, MTW,
that break the space–time symmetry. They have the same eigenvalues (in the reduced
system for P ), which are

p1, p2 : λ1 = 1 − 4µ, λ2 = 1 + 2
a − b

a
µ, (A 21)

and they are stable if µ > 0 and a < b.
When a = 0 or a+b = 0 or a−b = 0, there are degeneracies between the fixed points

pi and/or their eigenvalues, so we will assume a 
= 0 and a+b 
= 0 and a −b 
= 0. The
bifurcation has six different scenarios, corresponding to the six regions in parameter
space delimited by the curves a = 0, a + b =0 and a − b = 0, as illustrated in figure 20.
The phase portraits for the six scenarios are schematically drawn in figure 21. The
scenarios and phase portraits in figures 20 and 21 occur in a number of contexts
involving symmetry-breaking Hopf bifurcations (see Crawford & Knobloch 1991,
and references therein). As the bifurcation is of codimension one and takes place for
µ = 0, we have plotted the phase portraits for the reduced system (r1, r2) before and
after the bifurcation.

In the first (I) and second (II) scenarios, the two modulated travelling waves and
the modulated standing wave bifurcate simultaneously and supercritically from the
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Figure 20. Regions in parameter space where different dynamics exist. The corresponding
phase portraits are shown in figure 21.
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Figure 21. Phase portraits corresponding to the six bifurcation scenarios in figure 20. Phase
portraits for the reduced system (r1, r2) have been plotted before (µ< 0) and after (µ> 0) the
bifurcation.

base state, that becomes unstable. In the first scenario the MTW are stable and
the MSW is unstable. In the second scenario it is the opposite. In the (IV) and
(V) scenarios, the two modulated travelling waves and the modulated standing wave
bifurcate simultaneously and subcritically from the base state, that becomes unstable.
The travelling and standing waves are always unstable, so after the bifurcation (µ > 0)
there are no stable solutions close to the origin, and the system evolves far away
from the base state. The only difference between the two scenarios is in the number
of unstable directions of the standing wave, one and two in scenarios (IV) and (V)
respectively. In the (III) scenario, the base state becomes unstable by colliding with
the unstable MSW, and after the bifurcation the two MTW emerge but are unstable,
and the system evolves far away from the base state, as there are no stable states
close to the origin. Finally, in the (VI) scenario, the base state becomes unstable by
colliding with the two unstable MTW, and after the bifurcation the MSW emerge
but are unstable, and the system evolves far away from the base state as before. In
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the system under consideration, and for the parameter values analysed, the second
scenario (II) takes place.

Appendix B. Neimark–Sacker bifurcation with SO(2) symmetry
The M1 spiral waves perturbation velocity field depends on (θ, z) only in the

combination ωst + kz + nθ . After the bifurcation, an additional dependence on
ωwt + nwθ appears, therefore the critical eigenvector is of the form f (r, t, ωst +
kz + nθ)ei(ωwt+nwθ). In fact we do not have a pair of complex-conjugate eigenvectors,
but rather an infinite family. This is because the action of Rα does not leave an M1
spiral wave invariant (the bifurcation to M1 has broken the rotational symmetry),
but changes its phase in the azimuthal direction. The Poincaré map (strobing with the
forcing period Tf ) has a pair of complex-conjugate eigenvectors of modulus one at
the bifurcation point, given by e±iβ2 with β2 =ωwTf = 2π ωw/ωf . It also has a centre
direction corresponding to the continuous symmetry broken at the bifurcation to
M1, so the centre manifold is three-dimensional. Nevertheless, as M1 is a relative
periodic orbit, the dynamics in this third direction decouples from the dynamics
corresponding to the pair of complex-conjugate eigenvectors (see Wulff et al. 2001),
so the bifurcation can be analysed as being effectively two-dimensional, spanned by
the mentioned eigenvector and its complex conjugate, and can be parameterized by
a complex amplitude A. The normal form x → P (x) = LP x + NP (x), with x = (A, Ā)
must satisfy (A 1), where the symmetry group is now G0 = SO(2), generated by the
helical motion Hα = RαT−nα/k , and no spatio-temporal symmetries exist. The action of
LP and Hα on (A, Ā) is easy to obtain from the (θ, z) dependence of the eigenvectors,
and is

LP = diag(eiβ2, e−iβ2 ), Hα = diag(einwα, e−inwα). (B 1)

LP =Hβ2/nw
, showing that the bifurcated solution is a modulated spiral wave:

advancing a forcing period is equivalent to a helical motion. The conditions (A 1) on
the normal form result in NP (A, Ā) =AQ̃(|A|2) and the normal form is

P : A → eiβ2A(1 + Q(|A|2)), (B 2)

where a factor e−iβ2 has been included in Q for convenience. This is the normal
form of a non-resonant Neimark–Sacker bifurcation (Kuznetsov 1998), the absence
of resonant terms being due to the presence of the helical symmetry group SO(2),
irrespective of β2/2π = ωw/ωf being rational or irrational. The bifurcated solution
retains a discrete helical symmetry: from (B 1), H2π/nw

is the identity on the bifurcated
solutions, and their symmetry group is discrete, �lnw

, generated by the helical motion
H2π/nw

. Notice that in this bifurcation the axial periodicity is not altered: H
nw

2π/nw
= Tλ,

an axial translation of the wavelength of the spiral wave.
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